Chains in the lattice of noncrossing partitions

نویسندگان

  • Paul H. Edelman
  • Rodica Simion
چکیده

The lattice of noncrossing set partitions is known to admit an R-labeling. Under this labeling, maximal chains give rise to permutations. We discuss structural and enumerative properties of the lattice of noncrossing partitions, which pertain to a new permutation statistic, m(a), defined as the number of maximal chains labeled by 0. Miibius inversion results and related facts about the lattice of unrestricted set partitions are also presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chains in the Noncrossing Partition Lattice

We establish recursions counting various classes of chains in the noncrossing partition lattice of a finite Coxeter group. The recursions specialize a general relation which is proven uniformly (i.e. without appealing to the classification of finite Coxeter groups) using basic facts about noncrossing partitions. We solve these recursions for each finite Coxeter group in the classification. Amon...

متن کامل

Noncrossing Partitions for the Group Dn

Abstract. The poset of noncrossing partitions can be naturally defined for any finite Coxeter group W . It is a self-dual, graded lattice which reduces to the classical lattice of noncrossing partitions of {1, 2, . . . , n} defined by Kreweras in 1972 when W is the symmetric group Sn, and to its type B analogue defined by the second author in 1997 when W is the hyperoctahedral group. We give a ...

متن کامل

Parking Functions of Types A and B

The lattice of noncrossing partitions can be embedded into the Cayley graph of the symmetric group. This allows us to rederive connections between noncrossing partitions and parking functions. We use an analogous embedding for type B noncrossing partitions in order to answer a question raised by R. Stanley on the edge labeling of the type B non-crossing partitions lattice.

متن کامل

Tamari lattices and noncrossing partitions in type B

The usual, or type An, Tamari lattice is a partial order on T A n , the triangulations of an (n+3)-gon. We define a partial order on T B n , the set of centrally symmetric triangulations of a (2n + 2)-gon. We show that it is a lattice, and that it shares certain other nice properties of the An Tamari lattice, and therefore that it deserves to be considered the Bn Tamari lattice. We define a bij...

متن کامل

Enumeration of bilaterally symmetric 3-noncrossing partitions

Schützenberger’s theorem for the ordinary RSK correspondence naturally extends to Chen et. al’s correspondence for matchings and partitions. Thus the counting of bilaterally symmetric k-noncrossing partitions naturally arises as an analogue for involutions. In obtaining the analogous result for 3-noncrossing partitions, we use a different technique to develop a MAPLE package for 2-dimensional v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 126  شماره 

صفحات  -

تاریخ انتشار 1994